Good Enough Practices In
Scientific Computing (And Data
Management)

https://doi.org/10.1371/journal.pcbi.1005510

T

DOI


https://doi.org/10.1371/journal.pcbi.1005510

Supervisor

Planning Raw Data P”m'. Data |
Analysis

Writing
Presentation Analysis

Exp.

Data I

EXt.
Collab




Supervisor

Planning

Writing

Prim.
Analysis

Raw Data

Exp.

Data I

Presentation Analysis i

EXt.
Collab




Data Management - Goals

* Data management
* Data
* |deas

» Decisions - Iterations are part of the scientific process. It’s important to
remember why certain decisions were taken

* Make the future you happy ©



Planning - Guidelines

* Define
* Goals
* Milestones
* Timeline
* Collaborators

* Be aware
» Potential bottlenecks (People can be bottlenecks too)
* Be realistic. You will not get it right on the first try



Data - Guidelines

* Raw Data:
* Never change raw data (You also don’t change measurements?)
* Back-up raw data
* Make it findable (ENA/Zenodo after publication)
* Make it usable = Describe the data

* Processed Data:

* Don’t change output of machine generated data (label, document if you have
to)

* Back-up “expensive” data (expensive = time & money)
* Document all steps taken to get from raw data to here
* Processed Data will change = Version your data



Data Organisation (High level)

* A project is a self-contained entity defined by goals. Try not to mix

projects
* Organise your projects with a standard template 2 = EH_H_\“
* Name -
» Subfolders (Separate Code from Data)
* Freezes

* Readme/Changelog = Keep it up to date
* Most important = Be consistent



Good or bad example?

* Project = project_1
e Subfolders

* Datal
* Data2

* Data files

* Metadata.final.txt

* Metadata.final.final.txt
* Metadata.final.final.xIxs
* results.v1-8.2020

* results.v2-7.2020

* myCode.R
 myCode2.R



Good or bad example

* Project > 551-1119-00L_FALL2021_TEA

* Subfolders
* code 2 Commands/Code/Pipeline
» data = Productive data generated in this project, including raw data
» scratch = Non productive data, temp files, sandbox
* Files:
* Readme

* Progress
* Description



Code/Software

* Project-Level
» Use language specific guidelines for code/structure
» Get familiar with git - Versioning
* (Test Driven Design)
e (Automated testing)

* Code-Level
* Comment
* |If the comment is complicated so is the code - simple is always better
* Semantic naming
* Don’t repeat yourself



Collaborations - Dependencies

* Make sure that everyone is on the same page

* Goals first, details later

* Delegate duties, set deadlines = People are busy.

* React to questions/requests ASAP. --> Sometimes you cant afford to
wait

* Share whatever you can share

* Versioned Code =2 Git
* \Versioned Data =2 Zenodo



Summary

* There will be iterations/Plans will change
* Be conservative with time estimates (Expectation Management)

 Set a standard for data hygiene and follow it
* E.g. documentation day after reaching milestone
* Folder structure
* Naming

* Version/DOI Freezes

* https://zenodo.org/
* https://github.com/



https://zenodo.org/
https://github.com/

Todo

* Group by project

* Decide on
* Name
* Structure
* Goals



