Diversity and community dissimilarity

Block Course

Guillem Salazar (Sunagawa lab)

FIH zürich

Diversity

Diversity

a H zürich

Alphadiversity ~ Richness + Evenness

Richness = 3 Low evenness Richness = 3 High evenness

Alphadiversity ~ Richness + Evenness

Shannon diversity:

$$H' = -\sum_{i=1}^R p_i \ln p_i \, .$$

where p_i is the relative abundance of species *i*

Site A: H' = -(1/3*ln(1/3) + 1/3*ln(1/3) + 1/3*ln(1/3)) = **1.0986**

Site B:

 $H' = -(1/5*\ln(1/5) + 1/5*\ln(1/5) + 1/5*\ln(1/5) + 1/5*\ln(1/5) + 1/5*\ln(1/5)) = \mathbf{1.6094}$

Site C: H' = -(4/6*ln(4/6) + 1/6*ln(1/6) + 1/6*ln(1/6) = **0.8676**

Community dissimilarity

anh zürich

Community dissimilarity (beta-diversity)

Index	Equation	Properties
Jaccard	$S_7 = \frac{a}{a+b+c}$	Compares the number of shared species to the number of species in the combined assemblages placing more emphasis on taxa not shared between sites
Sørensen	$S_8 = rac{2a}{(2a+b+c)}$	Compares the number of shared species to the mean number of species in a single assemblage placing more emphasis on similarity of samples owing to shared species

In the above table, a = the number of species shared between assemblages, b = the number of unique species in the first assemblage, and c = the number of unique species in the second assemblage.

Community dissimilarity (beta-diversity)

In the above table, a = the number of species shared between assemblages, b = the number of unique species in the first assemblage, and c = the number of unique species in the second assemblage.

<u>Similarity</u>	Distance / Dissimilarity
Site A-B: J = 3/(3+0+2) = 0.6	D = 1-J = 0.4
Site A-C: J = 3/(3+0+0) = 1	D = 1-J = 0

Community dissimilarity

Community dissimilarity

