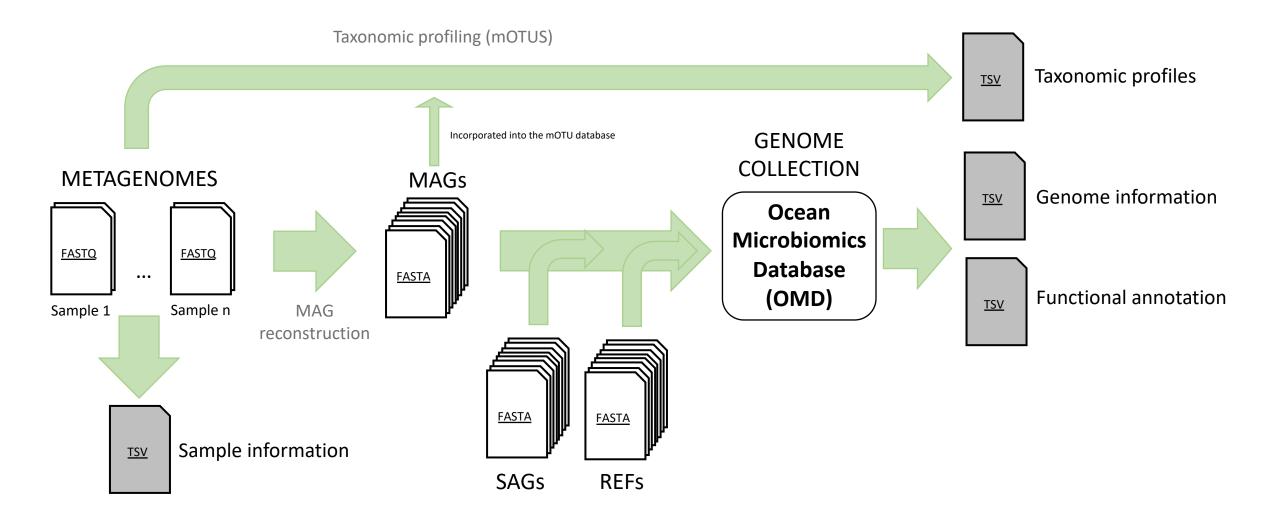
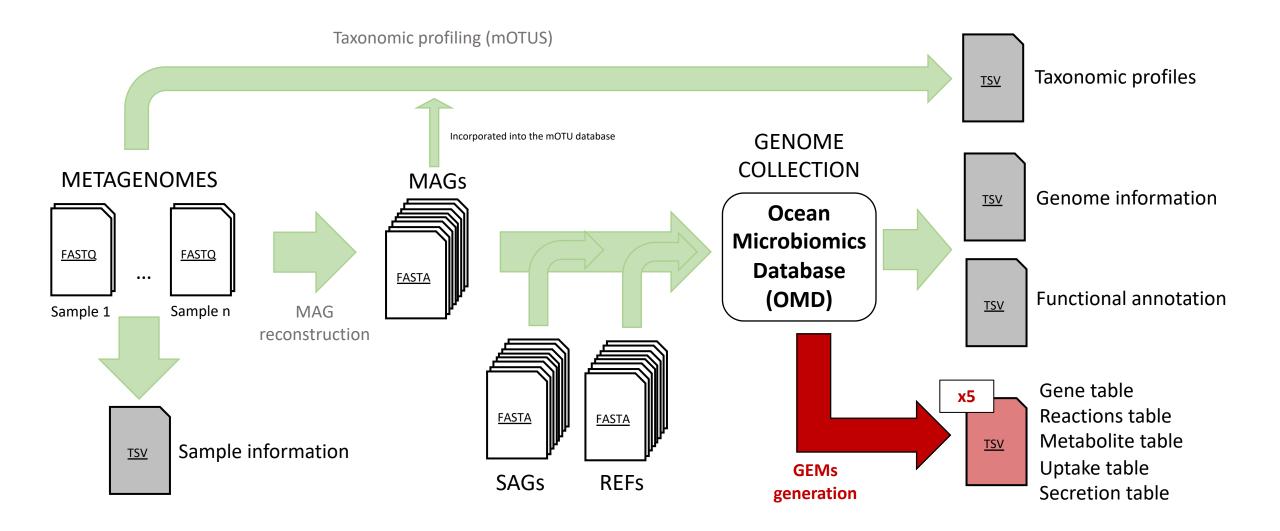
Introduction to the Ocean Microbiomics Database (OMD)

OMD Resources

- Publication: https://doi.org/10.1038/s41586-022-04862-3
- Companion website: https://microbiomics.io/ocean/
- Data location in the servers: /nfs/nas22/fs2202/biol_micro_teaching/551-1119-00L/masterdata


What is the OMD?

- A compilation of ~35,000 marine genome:
 - ~27,000 metagenome assembled genomes (MAGs)
 - ~5,900 single amplified genomes (SAGs)
 - ~1,700 reference genomes (REFs)
- MAGs were reconstructed from a set of ~1,000 metagenomic samples:
 - Tara Oceans, Malaspina and Biogeotraces expeditions
 - HOT and BATS time series


What is the OMD?

Overview of the OMD data

Overview of the OMD data

Available data for projects

Sample information \rightarrow sample_info_marine_v31.tsv

- Sample origin (study, coordinates, depth, etc.)
- Environmental variables (temperature, chlorophyll, nutrient conc., etc.)

<u>Taxonomic profiles</u> → motus_profiles_marine_v31.tsv

Abundance of each mOTU in each sample

Functional annota

<u>TSV</u>

TSV

<u>TSV</u>

<u>Functional annotation</u> → genome_kegg_marine_v31.tsv.gz

• KEGG annotation (KO presence per genome)

<u>TSV</u>

<u>Genome information</u> \rightarrow genome_info_marine_v31.tsv

- Genome-mOTU link
 - Source
- Quality stats
- Features (GC%, Genome size, etc.)

Available data for projects

Sample information \rightarrow sample information v31.tsv <u>TSV</u> Sample origin (study, coordinates, depth, etc.) TSV Environmental variables (temperature, chlorophyll, nutrient conc., etc.) Reaction table \rightarrow reactions reps.tsv Taxonomic profiles \rightarrow motus profiles marine v31.tsv TSV Abundance of each mOTU in each sample TSV <u>Functional annotation</u> → genome_kegg_marine_v31.tsv.gz <u>TSV</u> KEGG annotation (KO presence per genome) <u>TSV</u> Uptake table \rightarrow uptake reps.tsv

<u>TSV</u>

<u>TSV</u>

TSV

- <u>Genome information</u> \rightarrow genome info marine v31.tsv
- Genome-mOTU link
 - Source
 - Quality stats
 - Features (GC%, Genome size, etc.)

GEM models \rightarrow GEMs/*.xml

GEM models in the form of xml files

~2k

<u>xml</u>

Presence/absence of each gene in each genome

- Presence/absence of each reaction in each genome
- You'll need bigg models reactions.txt from BiGG

<u>Metabolite table</u> \rightarrow metabolites reps.tsv

- Presence/absence of each metabolite in each genome
- You'll need bigg models metabolites.txt from BiGG
- Presence/absence of each compound in each genome

Secretion table \rightarrow secretion reps.tsv

Presence/absence of each compound in each genome

General recommendations:

- You can try to answer the questions by any means: making plots, tables, numerical summaries, etc.
- The questions don't have a yes/no answer. The goal is to get familiar with the data and practicing with R.
- \odot Apart from producing results spend some time exploring them and understanding the meaning.
- If you don't know how to compute some step google!; if it does not work ask us!
- Be organized and create a script performing the entire task. Annotate your script so it can be understood later.
- Use the fread() (from the data.table package) to load the files.

Task 1: Summarize number of genomes:

- 1. How many genomes do we have available?
- 2. How many from each type (SAGs, REFs & MAGs)?
- 3. How many genomes can we associate with a mOTU?
- 4. How many mOTUs do we have? What proportion of those correspond to mOTUs for which we have at least a genome?
- 5. What is the distribution of genomes per mOTU?

Task 2: Explore genome quality statistics:

- 1. What is the distribution of completeness and contamination for the genome collection?
- 2. Is it different depending on the genome type (SAGs, MAGs, REFs)?
- 3. How comparable are the values computed with CheckM and ANVIO?
- 4. Is there any relationship between completeness and genome size? Is it the same for all three types of genomes? What may it mean?

Task 3: Explore the sample information:

- 1. How many samples do we have from each study?
- 2. Make a world map with the location of all samples. Differentiate studies in the map in some way (color, shape, etc.) → Will probably need to google how to make a map with ggplot
- 3. Are the different studies covering different depths?
- 4. Are the different studies covering different ranges of temperature?

Task 4: Explore the GEM information:

- 1. What is the average number of reactions per genome? What is the minimum and maximum? And the average/minimum/maximum number of compounds?
- 2. What is the organism capable of growing with the simplest environment? And the genome the most complex secretion?
- 3. List all genomes for which GEM predicts that nitrification is taking place
 - 1. You'll have to find which is the reaction responsible for nitrification. Something as basic as Wikipedia might help: <u>https://en.wikipedia.org/wiki/Nitrification</u>
 - 2. You'll have to find the corresponding reaction code in the BiGG database: <u>http://bigg.ucsd.edu</u>