best practices for data/project/software

management

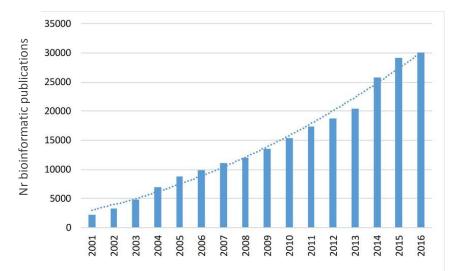
Block Course Fall 2022 551-1119-00L Microbial Community Genomics


Samuel Miravet-Verde smiravet@ethz.ch

Guillem Salazar guillems@ethz.ch

15-Nov-22

0. Computational biology || Why 'good practices' are required?



ALGORITHM: a process or set of rules to be followed in calculations or other problem-solving operations, especially by a computer.

3 bioinformatics papers in the top 15 most cited papers:

- 10th : ClustalW (1994) (40,000 cit. in 2014)
- 12th : BLAST (1990)
- 14th : PSI-BLAST (1997)

High-reaching tools, we have to ensure bioinformatic tools and analyses done with these tools are properly done

0. Computational biology || Why 'good practices' are required?

What's the point of writing good scientific software?

"Software written by academics has a reputation of being poorer quality than that software written by professional software developers"

"Well documented software takes **extra time** and in a competitive academic job market I feel like this is a **luxury**."

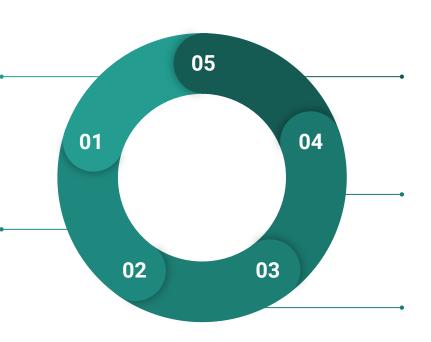
How Not to Be a Bioinformatician

"Stay low level at every level. Develop your code by anecdote: avoid planning phases, requirement analysis exercises or any structure to your code."

"If you create the application, **make it difficult to build and interpret**. Have plenty of hidden dependencies and bizarre variables."

1. The data analysis process || Basic workflow to analyse data

1. Define the question


Together with supervisor and/or collaborators

<u>Plan</u> experiments and potential roadblocks to deal during development

Consider the <u>assumptions</u> you will be taking during your analysis

2. Data collection

Either from samples or public resources (there are MANY!)

5. Sharing results

Summarize remarkable results, helped by text, tables and visualizations

Keep track of intermediary and non-reported results

4. Analyze the data

Apply the planned analyses.

<u>Fail Early, Fail Fast</u> \rightarrow be flexible and adjust to data requirements

3. Clean Data

Identify outliers, non-annotated data, etc. and remove it

Discarded data can still be used for other purposes (e.g., controls)

1. The data analysis process || Structuring a working directory

Structuring and keeping your working directory organized is essential to ensure **reproducibility**...

... Also for your mental health (and possible collaborators or future contributors!)

A good (and flexible) example:

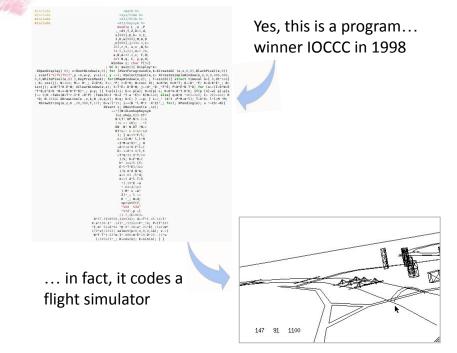
For your projects:

- config.yml
- data
- envs
- LICENSE
- reports
- results
- src
- multicate start_project.sh
 multicate start_

<u>MiqG/project_template: Template to give</u> <u>structure to new projects from the start</u> (github.com)

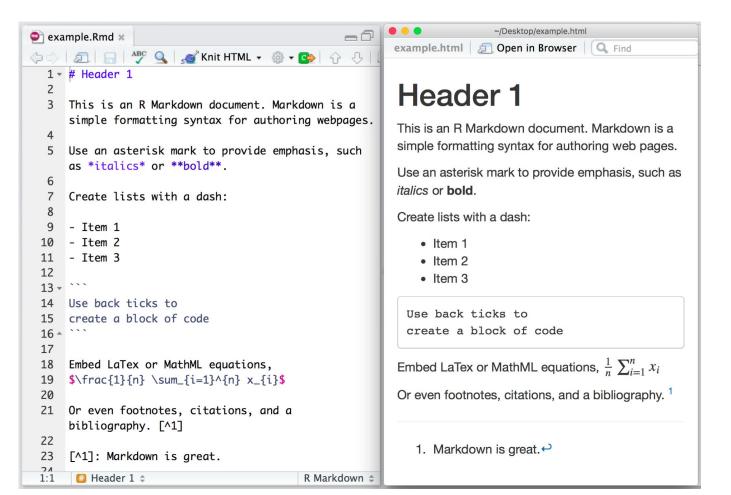
<u>General:</u> meaningful naming for files

- **Data**: original source of information, also processed tables
- **Reports**: documents summarizing results
- **Results**: figures, final tables
- **Scripts**: source code of functions and procedures you run on the data
- **Analysis**: your main document including all the analysis workflow

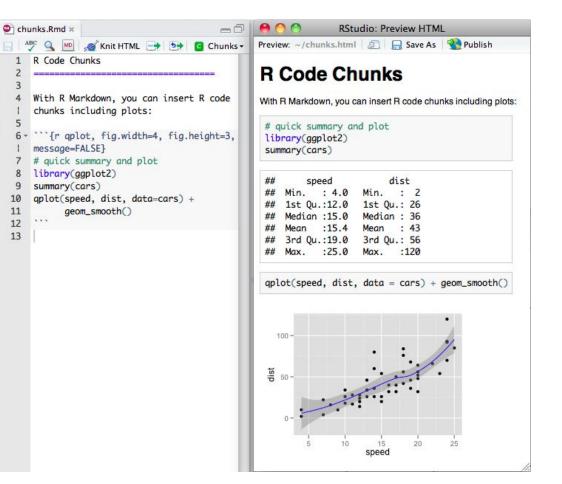

2. Documenting and reporting || Good practices when coding

Commenting code and describing functions (#)

```
Multi <- function(x, y) {
    # function to print x multiply y
    result <- x*y
    print(paste(x,"Multiply", y, "is", result))
}</pre>
```


- Conventionally is advisable to write a **main function** working as workflow schema and calling more complex functions.
- **Be expressive,** maybe what you see very clear is not trivial for a different developer.

Keep it simple and **contained**, we work for usability and accessibility. Very elaborated pieces of code can be unreadable.



Best Practices for Scientific Computing

2. Documenting and reporting || Embedding code in markdown

2. Documenting and reporting || Embedding code in markdown

https://www.rstudio.com/wp-content /uploads/2015/02/rmarkdown-cheat sheet.pdf

Extra:

You can call Bash (Unix Shell) programs by calling system:

In R
system('ls')

In python import os os.system('ls')

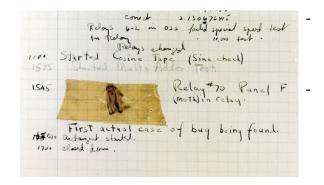
3. Data integrity || Keeping data & code safe

Data integrity refers to **the reliability and trustworthiness of data throughout its lifecycle**. It can describe the state of your data or even your code \rightarrow <u>ALWAYS KEEP YOUR RAW DATA SAFE</u>

Digital Object Identifiers (DOI) are useful to keep track of data versions (and publications, code, etc...)


Zenodo can generate a DOI associated to your dataset, processed data, programs...

Version control allows to keep track of changes in your code by storing it together the modifications one or more users perform on a file (even if they happen at the same time) \rightarrow **REPOSITORIES**


- <u>Github</u> is the most widely used platform. It allows
 - **branching** \rightarrow to define new functions for your code without breaking the main program/analysis
 - forking \rightarrow copying repositories made by other people
 - wiki \rightarrow markdown edition to document your code
 - issues \rightarrow direct communication with the developers of a tools to ask for new functionalities, report bugs...

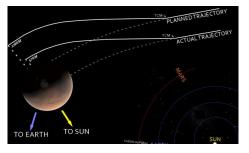
https://docs.github.com/en/get-started

4. Bugs || Types of bugs to take into account when coding

Valdation action Search action locatese minible Missile Missile Missile Missile Missile

Dhahran Patriot Missile assumption,

1991: minimal round $\rightarrow \frac{1}{3}$ of delay / 100h


Death of 28 soldiers from the U.S. Army

Grace Murray Hopper, Sept. 9th, 1947 \rightarrow "First actual case of bug being found" in *the Harvard Mark II* computer.

Computer crashed

Now:

- Syntax errors: cannot start
- Runtime error: cannot finish
- Semantic errors: the program runs and produces an output... BUT IT IS <u>NOT</u> <u>THE EXPECTED</u>.

Mars Climate Orbiter incompatibility, 1998:

- NASA : metric system
- External Software : US customary units

Collision in Mars for **\$327.6M**

Y2K bug (lack of foresight), 2000: "19" before year variables → waste of memory

Incalculable, not only money

5. Exercise || Planning the analysis procedure

define the number of functions, required steps or algorithm, and expected output for the following program specifications

- 1. Given a fasta file with nucleotide sequences, calculate the length and GC%
- 2. Given a table relating genome entries with their taxonomy, identify the ten most frequent OTUs
- 3. Given a list of genomes and a table of annotations, explore how the GC% compares between coding and non-coding regions
- 4. Given a metagenomic sample from a healthy donor and a patient, compare them at the taxonomic level

best practices for data/project/software

management

Block Course Fall 2022 551-1119-00L Microbial Community Genomics

Samuel Miravet-Verde smiravet@ethz.ch

Guillem Salazar guillems@ethz.ch

15-Nov-22