
 best practices for

data/project/software

management
Block Course Fall 2022

551-1119-00L
Microbial Community Genomics

Samuel Miravet-Verde
smiravet@ethz.ch

Guillem Salazar
guillems@ethz.ch 15-Nov-22

mailto:smiravet@ethz.ch
mailto:guillems@ethz.ch

ALGORITHM: a process or set of rules to be followed in calculations
or other problem-solving operations, especially by a computer.

3 bioinformatics papers in the top 15 most cited papers:
- 10th : ClustalW (1994) (40,000 cit. in 2014)
- 12th : BLAST (1990)
- 14th : PSI-BLAST (1997)

High-reaching tools, we have to ensure bioinformatic tools and
analyses done with these tools are properly done

0. Computational biology || Why ‘good practices’ are required?

N
r

b
io

in
fo

rm
at

ic
 p

u
b

lic
at

io
n

s

https://www.nature.com/articles/d41586-019-00381-w

https://www.nature.com/articles/d41586-019-00381-w

0. Computational biology || Why ‘good practices’ are required?

What's the point of writing good scientific software?

“Software written by academics has a reputation of being poorer quality than that software written
by professional software developers”

“Well documented software takes extra time and in a competitive academic job market I feel like this
is a luxury.”

How Not to Be a Bioinformatician

“Stay low level at every level. Develop your code by anecdote: avoid planning phases, requirement
analysis exercises or any structure to your code.”

“If you create the application, make it difficult to build and interpret. Have plenty of hidden
dependencies and bizarre variables.“

http://www.bioinformaticszen.com/post/whats-the-point-of-writing-good-scientific-software/
http://scfbm.biomedcentral.com/articles/10.1186/1751-0473-7-3

1. Define the question

Together with supervisor and/or
collaborators

Plan experiments and potential roadblocks
to deal during development

Consider the assumptions you will be taking
during your analysis

2. Data collection

Either from samples or public
resources (there are MANY!) 3. Clean Data

Identify outliers, non-annotated data,
etc. and remove it

Discarded data can still be used for
other purposes (e.g., controls)

5. Sharing results

Summarize remarkable results, helped
by text, tables and visualizations

Keep track of intermediary and
non-reported results

4. Analyze the data

Apply the planned analyses.

Fail Early, Fail Fast → be flexible and
adjust to data requirements

05

01

02 03

04

1. The data analysis process || Basic workflow to analyse data

Good enough practices in scientific
computing | PLOS Computational Biology

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005510

1. The data analysis process || Structuring a working directory

.
├── config.yml
├── data
├── envs
├── LICENSE
├── README.md
├── reports
├── results
├── src
├── start_project.sh
└── workflows
MiqG/project_template: Template to give
structure to new projects from the start
(github.com)

Structuring and keeping your working directory organized is essential to ensure reproducibility…

… Also for your mental health (and possible collaborators or future contributors!)

A good (and flexible) example:

.
├── data
├── reports
├── results
├── scripts
└── analysis.R

For your projects:

- Data: original source of information, also
processed tables

- Reports: documents summarizing results
- Results: figures, final tables
- Scripts: source code of functions and procedures

you run on the data
- Analysis: your main document including all the

analysis workflow

General:
meaningful naming
for files

https://github.com/MiqG/project_template
https://github.com/MiqG/project_template
https://github.com/MiqG/project_template

2. Documenting and reporting || Good practices when coding

- Commenting code and describing functions (#)

- Conventionally is advisable to write a main
function working as workflow schema and calling
more complex functions.

- Be expressive, maybe what you see very clear is
not trivial for a different developer.

- Keep it simple and contained, we work for
usability and accessibility. Very elaborated
pieces of code can be unreadable.

Yes, this is a program…
winner IOCCC in 1998

… in fact, it codes a
flight simulator

Best Practices for Scientific Computing

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

2. Documenting and reporting || Embedding code in markdown

2. Documenting and reporting || Embedding code in markdown

https://www.rstudio.com/wp-content
/uploads/2015/02/rmarkdown-cheat
sheet.pdf

Extra:

You can call Bash (Unix Shell) programs
by calling system:

In R
system('ls')

In python
import os
os.system('ls')

https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf

Data integrity refers to the reliability and trustworthiness of data throughout its lifecycle. It can describe the state of
your data or even your code → ALWAYS KEEP YOUR RAW DATA SAFE

Digital Object Identifiers (DOI) are useful to keep track of data versions (and publications, code, etc…)

- Zenodo can generate a DOI associated to your dataset, processed data, programs…

3. Data integrity || Keeping data & code safe

Version control allows to keep track of changes in your code by storing it together the modifications one or more users
perform on a file (even if they happen at the same time) → REPOSITORIES

- Github is the most widely used platform. It allows
- branching → to define new functions for your code without breaking the main program/analysis
- forking → copying repositories made by other people
- wiki → markdown edition to document your code
- issues → direct communication with the developers of a tools to ask for new functionalities, report bugs…

https://docs.github.com/en/get-started

https://zenodo.org/
https://github.com/
https://docs.github.com/en/get-started

- Grace Murray Hopper, Sept. 9th, 1947 →“First actual case of bug being found” in
the Harvard Mark II computer.

Mars Climate Orbiter incompatibility, 1998:
- NASA : metric system
- External Software : US customary units

Dhahran Patriot Missile assumption,
1991: minimal round → ⅓ of delay / 100h

Y2K bug (lack of foresight), 2000:
“19” before year variables → waste of
memory

Death of 28 soldiers from the U.S. Army

Computer crashed

Collision in Mars for $327.6M Incalculable, not only money

- Now:
- Syntax errors: cannot start
- Runtime error: cannot finish
- Semantic errors: the program runs and produces an output… BUT IT IS NOT

THE EXPECTED.

4. Bugs || Types of bugs to take into account when coding

1. Given a fasta file with nucleotide sequences, calculate the length and GC%

2. Given a table relating genome entries with their taxonomy, identify the ten most frequent OTUs

3. Given a list of genomes and a table of annotations, explore how the GC% compares between
coding and non-coding regions

4. Given a metagenomic sample from a healthy donor and a patient, compare them at the taxonomic
level

5. Exercise || Planning the analysis procedure

define the number of functions, required steps or algorithm, and expected output for the following
program specifications

G
O

A
L

 best practices for

data/project/software

management
Block Course Fall 2022

551-1119-00L
Microbial Community Genomics

Samuel Miravet-Verde
smiravet@ethz.ch

Guillem Salazar
guillems@ethz.ch 15-Nov-22

mailto:smiravet@ethz.ch
mailto:guillems@ethz.ch

