E *H* zürich

551-1119-00L Microbial Community Genomics

Lecture: Tools for metabolic modeling in microbial communities

Samuel Miravet-Verde 8-Nov-23

Lecture content:

- Introduction to Genome-scale Metabolic models (GEMs)
- Building GEMs
- Evaluation of GEMs
- Exploration of GEMs
- Optimization of GEMs
- Visualization of pathways
- Exploring metabolic interaction in the community
- Introduction for Hands-on tutorial
- Conclusions

GEMs as a tool in microbiology research:

Genome-scale metabolic models (GEMs) provide a representation of an organism's metabolism, encompassing all known metabolic reactions and associated genes. This allows:

- to understand and simulate the biochemical processes within a cell
- predict of cellular behavior under different conditions, such as:
 - growth rates
 - nutrient availability
 - genetic perturbations
 - analysis of metabolic pathways and flux distributions
 - identification of potential drug targets
- GEMs can be integrated with omics data to enable the study of metabolic responses to environmental changes, diseases, and the design of biotechnological applications.

Adapted from: Reconstructing organisms in silico: genome-scale models and their emerging applications | Nature Reviews Microbiology

Building GEMs (bottom-up)

In the traditional (bottom-up) approach, a draft model is automatically generated from the genome of a given organism (by homology/orthology against annotated genes), followed by extensive manual curation

Adapted from: <u>Fast automated reconstruction of genome-scale</u> metabolic models for microbial species and communities

New reactions are iteratively added to the network by gap-filling. This process is context dependent, i.e. it requires specifying the environmental conditions (growth medium) and the expected phenotype (usually biomass formation or growth)

Building GEMs (top-down)

- 1. A universal model is generated and curated.
- 2. This model is used as a template for organism-specific model generation (<u>carving</u>)
 - a. Identify (by homology/orthology) reactions present in the given organism.

This does not require manual intervention and can be parallelizable to generate large numbers of models.

This can be applied to the generation of microbial community models by merging single-species models.

Building GEMs (top-down)

cdanielmachado/carveme: CarveMe: genome-scale metabolic model reconstruction (github.com)

CarveMe is a python-based tool for genome-scale metabolic model reconstruction

Input: genes (nucleotide or amino acids)

Output: .xml and .tsv file with genes associated to reactions

BiGG Models

- By default it uses DIAMOND against <u>BiGG</u>:
 - composed of >70 highly curated metabolic models
 - 58 of these are from *Escherichia coli*

Do you see any limitation here?

• Alternatively:

eggNOG-mapper (embl.de)

• Precomputed Orthologous Groups (OGs)

Ødiamond

bbuchfink/diamond: Accelerated BLAST compatible local sequence aligner. (github.com)

DIAMOND is a sequence aligner for protein and translated DNA searches, designed for high performance analysis of big sequence data. The key features are:

• Pairwise alignment of proteins and translated DNA at 100x-10,000x speed of BLAST.

Building GEMs (top-down)

FASTA Sequence File

>generic|ENSMUSP00000107433|Erp29|ER protein 29
MAAAAGVSGAASLSPLLSVLLGLLLLFAPHGGSGLHTKGALPLDTVTFYKSRLLLGP

reaction

scores

<?xml version="1.0" encoding="UTF-8"?> <sbml level="2" version="1" xmlns="http://www.sbml.org/sbml/level2"> <model name="example"> <listOfCompartments> <compartment id="cell" size="le-15" /> </listOfCompartments> <listOfSpecies> <species id="A" compartment="cell"</pre> initialConcentration="0.6" /> <species id="B" compartment="cell" initialConcentration="0.3" /> </listOfSpecies> <listOfParameters> <parameter id="k" value="1" /> </listOfParameters> <listOfReactions> <reaction id="AinB"> <listOfReactants> <speciesReference species="A" /> </listOfReactants> <listOfProducts> <speciesReference species="B" /> </listOfProducts> <kineticLaw> <listOfParameters> <parameter id="k" value="0.1"> </listOfParameters> <math xmlns="http://www.w3.org/1998/Math/MathML"> <apply> <times/> <ci>cell</ci> <ci>k</ci> <ci>A</ci> </apply> </kineticLaw> **BiGG** </reaction> </listOfReactions> </model> </sbml>

Evaluation of GEMs

 MEMOTE serves as a benchmark tool generating a comprehensive, human-readable report, which quantifies the model's performance

- Snapshot \rightarrow report on a model
- Diff \rightarrow To compare models
- History \rightarrow version control of changes in a model
- For model reconstruction, MEMOTE helps users to create a version-controlled repository for the model and to activate continuous integration

Exploring GEMs

Complete downstream analyses from a model:

- Inspection
- gap filling
- FBA
- dynamic FBA, etc

Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 | Nature Protocols

Exploring GEMs

G.reactions[50] # Access reactions

1 G.reactions ✓ 0.0s	50]
Reaction identifier	3M2OPLOXRD
Name	3-Methyl-2-oxopentanoate:lipoamide oxidoreductase(decarboxylating and
Memory address	0x7f23a80646d0
Stoichiometry	3mop_c + h_c + lpam_c> 2mbdhl_c + co2_c (S)-3-Methyl-2-oxopentanoate + H+ + Lipoamide C8H15NOS2> S-(2-Methylbutanoyl)-dihydrolipoamide + CO2 CO2
GPR	MALA_SAMN05422137_METAG_scaffold_51_gene_40
Lower bound	0.0
Upper bound	1000.0

Exploring GEMs

1 G.metabolites.ge	t_by_id("atp_c")
′ 0.0s	Python
Metabolite identifier	atp_c
Name	ATP C10H12N5O13P3
Memory address	0x7f23ad543650
Formula	C10H12N5O13P3
Compartment	C_c
In 368 reaction(s)	2AGPEAT181, ADSK, TRPabc, PE120abcpp, HISHISabcpp, PTRCabc, GLCabc, ASPK, CHOLSabc_1, CYSabc, TSULabcpp, HEMEti, MELIBabc, PG160abcpp, PTRCabcpp, ZN2abcpp, PFK, PTPATi, UAMAGS, 4HPTNCOAK, HISabc,

DBIOL

Optimization of GEMs - FBA

Advances in flux balance analysis by integrating machine learning and mechanism-based models - ScienceDirect

- Flux balance analysis is the main tool for predicting flux distributions in genome-scale metabolic models. This enables:
 - Modeling context-specific network behavior
 - Growth estimation
 - Gene deletion impact
 - etc

E *H* zürich

Optimization of GEMs

FBA is based in:

DBIOL

- Uptake of required metabolites \bigcirc
- Media used to grow the cell 0

				Uptake
C-Flux	C-Number	Flux	Reaction	Metabolite
0.00%		0.01981	EX_5mcsn_e	5mcsn_e
0.90%		6.134	EX_LalaDgluMdapDala_e	LalaDgluMdapDala_e
0.809		12.27	EX_acgam1p_e	acgam1p_e
0.519		12.53	EX_ade_e	ade_e
16.559		337.1	EX_arg_L_e	arg_L_e
0.489		14.79	EX_asnL_e	asn_L_e
0.009		0.3193	EX_ca2_e	ca2_e
0.699	10	8.465	EX_chor_e	chor_e
0.009		0.3193	EX_cl_e	cl_e
0.009		0.006134	EX_cobalt2_e	cobalt2_e
0.009		0.04349	EX_cu2_e	cu2_e
0.009		0.4119	EX_fe2_e	fe2_e
0.055		0.4789	EX_fe3dcit_e	fe3dcit_e
0.019		0.04104	EX_fol_e	fol_e
41.419		843.5	EX_glcur_e	glcur_e
0.455			EX_gluD_e	glu_D_e
24.559		1000	EX_glyc3p_e	glyc3p_e
0.619		14.88	EX_gua_e	gua_e
0.005		94.09	EX_h2o_e	h2o_e
0.295	12	2.906	EX_hishis_e	hishis_e
0.239	8	3.487	EX_indole_e	indole_e
0.009		11.97	EX_k_e	k_e
1.039	6	21.05	EX_lys_L_e	lys_L_e
0.000	-	0.107		

C-Fluo

0 0.00%

6 52.69%

0 0.00%

0 0.00%

18 10.489

2 20.82%

0 0.00%

3.94%

EX_h_e -471.3

-1000

EX inost e -843.5

EX no2 e -359.9

EX_oxa_e -1000

EX_pi_e -951.9

EX_thym_e -75.61

EX_ura_e -39.69

EX ocdcea e -55.95

EX nh4 e

h e

inost e

nh4 e

no2 e

oxa_e

pi_e

thym e

ura e

ocdcea_e

Optimization of GEMs - Gap Filling

Reaction gap filling is a computational technique for proposing the addition of reactions to genome-scale metabolic models to permit those models to 'run' correctly

Application examples:

- We know our model organism grows in LB media but the model reports it is not possible:
 - Guide a better gene annotation of the model
 - A gene orphan in function? \rightarrow enzyme discovery
 - Multifunctional enzymes?
- What does the model organism needs to grow in M9 media?
 - Supplement the media with metabolite X to grow
 - Engineer the model (e.g., adding an enzyme) to metabolize specific compounds

E *H* zürich

Visualization of pathways

- SBMLDiagrams
 - Welcome to SBMLDiagrams's documentation! SBMLDiagrams 0.0.1 documentation (sys-bio.github.io)
- Escher Welcome to the documentation for Escher Escher 1.7.3 documentation
 - Uses JSON files (from cobra)
 - Allows to build from reaction/gene/metabolite and organize
- NetworkX <u>NetworkX NetworkX documentation</u> → useful for custom networks

DBIOL

Exploring GEMs

- In the population context, a microbe will interact with the community
 - In some cases, it will be essential for a bacterium to take metabolites from its environment to survive
 - Compounds secreted can be taken into advantage by other individuals
- GEMs can be combined to evaluate these interactions

<u>Global metabolic interaction network of the human gut microbiota for</u> <u>context-specific community-scale analysis | Nature Communications</u>

Metabolic interaction

cdanielmachado/smetana: SMETANA: a tool to analyse interactions in microbial communities (github.com)

- Main concepts:
 - Global level:
 - MRO (metabolic resource overlap): calculates how much the species compete for the same metabolites.
 - MIP (metabolic interaction potential): calculates how many metabolites the species can share to decrease their dependency on external resources.
 - Individual level
 - SCS (species coupling score): measures the dependency of one species in the presence of the others to survive
 - MUS (metabolite uptake score): measures how frequently a species needs to uptake a metabolite to survive
 - MPS (metabolite production score): measures the ability of a species to produce a metabolite
 - SMETANA: the individual smetana score is a combination of the 3 scores above, it gives a measure of certainty on a cross-feeding interaction (species A receives metabolite X from species B).

Metabolic interactions

Global mode just provides the MIP and MRO values for the whole community:

community	medium	size	mip mro
all complet	e 8	8 0	.600907029478458

Detailed mode

community	medium	receiver	donor	compound	scs	mus	mps	smetana
all	minimal	bsubtilis_atc6633	ecoli_k12	M_alaala_e	1.0	0.01	1	0.01
all	minimal	bsubtilis_atc6633	ecoli_k12	M_argL_e	1.0	0.01	1	0.01
all	minimal	bsubtilis_atc6633	ecoli_k12	M_aspL_e	1.0	0.01	1	0.01
all	minimal	bsubtilis_atc6633	ecoli_k12	M_cellb_e	1.0	0.04	1	0.04
all	minimal	bsubtilis_atc6633	ecoli_k12	M_cgly_e	1.0	0.73	1	0.73
all	minimal	bsubtilis_atc6633	ecoli_k12	M_cu2_e	1.0	1.0	1	1.0
all	minimal	bsubtilis_atc6633	ecoli_k12	M_cys_L_e	1.0	0.13	1	0.13
all	minimal	bsubtilis_atc6633	ecoli_k12	M_fe2_e	1.0	0.01	1	0.01
all	minimal	bsubtilis_atc6633	ecoli_k12	M_fe3_e	1.0	0.97	1	0.97
all	minimal	bsubtilis_atc6633	ecoli_k12	M_fe3pyovd_kt_e	1.0	0.02	1	0.02
all	minimal	bsubtilis_atc6633	ecoli_k12	М_дЗре_е	1.0	0.22	1	0.22
all	minimal	bsubtilis_atc6633	ecoli_k12	M_g3pg_e	1.0	0.43	1	0.43
all	minimal	bsubtilis_atc6633	ecoli_k12	M_glyald_e	1.0	0.05	1	0.05
all	minimal	bsubtilis_atc6633	ecoli_k12	M_glyc3p_e	1.0	0.03	1	0.03
all	minimal	bsubtilis_atc6633	ecoli_k12	M_glyc_e	1.0	0.01	1	0.01

Metabolic interactions

Custom NetworkX scripts to visualize (examples with a 8-members community):

• Networks (nodes and edges) as main representation

P(interaction) between each species

DBIOL

Donor, receiver and compounds as nodes, P(interaction) as edge weight

Compounds provided to *B. subtilis* by *E. coli,* edge size by probability

M glyc3p e

21

edges (or links) M glyald e M alaala e M_arg_L_M/fe2_e M ura M fe3pyovd k M glyc e M hxan_e

nodes (or vertices)

Metabolic interactions

• Heatmaps are also a good way to evaluate interactions:

Do you see any limitation here?

Data: the ocean microbiomics database

- 1,038 samples
- 34,815 genomes
- ~8,300 taxonomic groups

Conclusions

- Genome-scale metabolic models (GEMs) provide a representation of an organism's metabolism, encompassing all known metabolic reactions and associated genes.
- Several tools developed to build, assess, explore and exploit models for research purposes
- Still, several assumptions are taken:
 - Bias towards known gene annotations
 - Bias towards curated models:
 - *E. coli* will be easy and accurate to model
 - Alternative metabolism can be difficult to model
 - Even more if we consider most of these microbes cannot be cultured!
- GEMs can help to identify the conditions required to grow specific organisms
- Metabolic interactions can be predicted highlighting dependencies between individuals in a community such as microbiomes in the gut, skin, soil, ocean, etc.
 - These models cannot represent species abundance