

551-1119-00L Microbial Community Genomics

Introduction to the course:

Time plan, room plan, assessments

Organization team

Teaching & Supervision

Samuel Miravet-Verde

Martin Sperfeld

Coordinator

Shinichi Sunagawa

IT support

Urs Blumentritt

Hans-Joachim Ruscheweyh

Learning objectives

THEORY

- Understand the basics of community genomics, including how this information is produced, reconstructed and analyzed.
- Ecological, biomedical and biotechnological relevance of microbiomes.
- Methods for genomic mining.

PRACT

- Data exploration and analysis using ecologically relevant metagenomic information.
- Bioinformatic applications to perform genomic mining.
- Gain skills in planning and developing scientific projects.

scientific skills

- Critically assess current literature in microbial genomics.
- Gain skills in oral presentation of scientific results and scientific writing.

What to expect

- Introduction to the research area of microbial community genomics
- We will balance tutorials with REAL scientific research for the next 3.5 weeks:
 - Things may not work out as planned.
 - Your supervisor will be managing multiple projects (and their own!).
 Please be patient with them. If you have "spare time", read papers, practice some of the skills you acquire, etc.
 - You will get out what you put in...
 - Evaluation is not based on the novelty or positive results of what you obtain!

Important points for real research

- Scientific Integrity
 - You will be working in an environment and with equipment that is shared with the Microbiome Research laboratory.
 - Do not remove/modify any data on the systems that are unrelated to your work. If in any doubt ASK (questions better than accidents!)
 - When doing original work, you need to document what you do, so that it is reproducible for anyone else.
 - Comment your code
 - Keep track of ideas, analysis, main research questions, etc. You can use slides, a task manager or a simple notepad.
 - Take time to think and talk through course content so you understand what you are doing.

Plan for the next 3 weeks

- Learn the basics of how genomes are reconstructed from metagenomic data.
- Learn the basics of the information we can extract from genomes and how this can be used.
- Apply data analysis to address molecular, genetic, ecological and/or evolutionary questions.
- Identify and work on research questions you would like to address.

Methods

- Use of diverse bioinformatics software and the programming language python.
 - This is just a recommendation, you are free to use your favorite programming language (R supported in the server)
- Use a collection of marine metagenome assembled genomes (MAGs) together with enriched information to explore genetic-related questions.
- Use command line software and programming to analyze this data.
- Work on specific research questions in groups involving topics such as biosynthetic gene cluster or antimicrobial peptides.

Assessment

1) Written report (1/2) in the format of a short scientific paper.

Title, Abstract, Introduction, Methods, Results, Discussion (+Figure/Table)

- Each student should prepare at least one figure/table with legends/headers
- Each participant should produce their own report. Plagiarism will not be tolerated.
- Font size 12, 1.5 line spacing. Maximum 10 pages in total including figures, legends and references.

Hand in by December 11th 2024

- 2) Oral presentation (1/2): 20 min (15+5) on November 27th
 - Invite lab or not?

Use of Al

- You can make use of tools such as ChatGPT to help you during coding in your projects but not during the hands-on and practical sessions.
 - Always spend time understanding what the code actually does if produced by Al!
 - You still have the control! (e.g. does the Al code produce the expected no. of rows?)
- It is not allowed (nor recommended) to use AI to produce text for the reports as the goal is to learn about how to explain your science effectively.

Week 1: 058.11.2024				
Tue	Wed	Thu	Fri	
	3. Introduction to genomics and mining	7. Hands-on tutorial	11. Exercise: intro to OMD	
	Introduction to computational genomic mining	8. Hands-on tutorial	12. Exercise: intro to OMD	
1. Introduction	5. Introduction to python programming	9. Hands-on tutorial	13. Exercise: intro to OMD	
2. Setup infrastructure UNIX intro	6. Introduction to data analysis with python	10. Hands-on tutorial	14. Explanation of potential group projects	

Week 2: 1215.11.2024				
Tue	Wed	Thu	Fri	
	17. Group projects + Institute Seminar	21. Group projects	25. Group project presentations	
	18. Group projects	22. Group projects	26. Institute Seminar: Martin Steinegger	
15. Best practices for data analysis	19. External Talk: Serina Robinson	23. External Talk: Shini	27. Group project presentations	
16. Wrap up / Plan group projects	20. Group projects	24. Group projects	28. Wrap up / plan next week	

Shinichi Sunagawa

Serina Robinson (EAWAG Group Leader)

Week 3: 1922.11.2024				
Tue	Wed	Thu	Fri	
	31. Group projects + Institute Seminar	35. Group projects	40. Group project presentations	
	32. Group projects	36. Group projects	41. Group project presentations	
29. Report writing and presentation skills	33. Group projects	38. Group projects	42. Group project presentations	
30. Group projects	34. Group projects	39. Group projects	43. Wrap up and freeze results	

Week 4: 2627.11.2024		
Tue	Wed	
	46. Final Presentations	
	47. Final Presentations	
44. Prep. presentation	48. Final Presentations	
45. Prep presentation	49. Discuss based on presentations for writing the project	

Important information: learning resources

Main source of material:

https://sunagawalab.ethz.ch/share/teaching/home/551-1119-00L_Fall2024/index. html

Questions and details TBD

- Any question on the overall organization of the course?
- Discussion: Adjusting the schedule
 - ETH suggested:
 - First day 12:45 16:30 w/ 30' break
 - Rest of the month on Tuesday 13:30 17:30 w/ 30' break
 - 8:45 17:30 w/ 2x30' break + 1h15' lunch break
 - Previous BC editions:
 - 13:00 16:30 w/ 15' break
 - 9:00 17:00 w/ 2x15' break + 1h lunch break

